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Abstract

The Sec61 or SecY channel, a universally conserved protein-conducting
channel, translocates proteins across and integrates proteins into the eu-
karyotic endoplasmic reticulum (ER) membrane and the prokaryotic plasma
membrane. Depending on channel-binding partners, polypeptides are
moved by different mechanisms. In cotranslational translocation, the ribo-
some feeds the polypeptide chain directly into the channel. In posttrans-
lational translocation, a ratcheting mechanism is used by the ER-lumenal
chaperone BiP in eukaryotes, and a pushing mechanism is utilized by the
SecA ATPase in bacteria. In prokaryotes, posttranslational translocation is
facilitated through the function of the SecD/F protein. Recent structural and
biochemical data show how the channel opens during translocation, translo-
cates soluble proteins, releases hydrophobic segments of membrane proteins
into the lipid phase, and maintains the barrier for small molecules.
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ER: endoplasmic
reticulum

TM: transmembrane

SRP: signal
recognition particle

Hsp70 family:
comprises heat-shock
proteins of ∼70 kDa
that consist of an
ATPase domain and a
peptide-binding
domain
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INTRODUCTION

Many proteins are transported across or are integrated into the eukaryotic endoplasmic reticulum
(ER) membrane or the prokaryotic plasma membrane. Soluble proteins, such as those ultimately
secreted from the cell or localized to the ER lumen, cross the membrane completely and usually
have amino-terminal, cleavable signal sequences, the major feature of which is a segment of 7 to 12
hydrophobic amino acids. Membrane proteins, such as those in the plasma membrane or in other
organelles of the secretory pathway, are integrated into the lipid bilayer by transmembrane (TM)
segments composed of about 20 hydrophobic amino acids; hydrophilic segments of a membrane
protein either cross the membrane or remain in the cytosol. Both types of proteins are translocated
by the same protein-conducting channel, which is formed from a conserved heterotrimeric mem-
brane protein complex called the Sec61 complex in eukaryotes and the SecY complex in bacteria
and archaea. The Sec61/SecY channel has two main activities: It allows soluble polypeptides to
cross the membrane and hydrophobic TM segments of membrane proteins to exit laterally into
the lipid phase.

The Sec61/SecY channel alone is a passive pore; it must associate with partners that provide a
driving force for translocation. In cotranslational translocation, the main partner is the ribosome.
This pathway exists in all cells and is used for the translocation of secretory proteins as well as for
the integration of most membrane proteins. Some proteins are translocated by the Sec61/SecY
channel after completion of their synthesis, that is, posttranslationally. This pathway is used
mostly by secretory proteins that possess only moderately hydrophobic signal sequences or are
too short to be efficiently recognized by the signal recognition particle (SRP) during their synthesis.
Posttranslational translocation of secretory proteins occurs by different mechanisms in eukaryotes
and bacteria. In eukaryotes, the channel partners with another membrane-protein complex, the
Sec62/Sec63 complex, and with the lumenal chaperone BiP, a member of the Hsp70 family of
ATPases. BiP acts as a molecular ratchet to bias the passive movement of a polypeptide in the
Sec61 channel. In bacterial posttranslational translocation, the channel partners with the cytosolic
ATPase SecA. SecA uses the energy of ATP hydrolysis to push a polypeptide chain through
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the channel. Translocation in bacteria is also stimulated by an electrochemical gradient across
the membrane. Archaea probably use both cotranslational and posttranslational translocation
(47, 67), but it is unknown how posttranslational translocation occurs because these organisms
lack SecA, the Sec62/Sec63 complex, and BiP.

In this review, we discuss these protein translocation pathways and the mechanisms of mem-
brane integration, with special emphasis on recent developments. The reader is referred to earlier
reviews that cover some aspects in more detail (11, 20, 70, 77).

THE Sec61/SecY CHANNEL

The channel-forming Sec61/SecY complex consists of three subunits, α, β, and γ. The α- and
γ-subunits show significant sequence conservation, and both subunits are essential for cell viability.
The β-subunits are not universally conserved and are not essential. The α-subunit forms the pore
of the channel, as initially shown by photocross-linking experiments, which demonstrated that
the α-subunit of the Sec61 complex surrounds the polypeptide chain during its passage across
the membrane (64). In addition, reconstitution experiments showed that the Sec61/SecY complex
is the essential membrane component for protein translocation (1, 8, 31). The channel has an
aqueous interior, as indicated by electrophysiology experiments (86) and by measurements of the
fluorescence lifetime of probes incorporated into a translocating polypeptide chain (12, 13).

The crystal structure of an archaeal SecY complex (from Methanococcus jannaschii ) provided
important insight into the function of the translocation channel (93). Viewed from the cytosol,
the α-subunit is divided into two halves, TM segments 1–5 and 6–10, which surround a central
pore (Figure 1a). The loop between TM segments 5 and 6 at the back of the α-subunit serves as
a hinge, allowing the α-subunit to open at the front and form the lateral gate. The γ-subunit links
the two halves of the α-subunit at the back by extending a TM segment diagonally across their

γ-subunit
(SecE)

β-subunit

Lateral
gate

α-subunit
(SecY)

Pore ring

TM7TM7

TM2bTM2b BackFront

a  Top view b  Side view 

Extracellular
space

Cytosol

γ-subunit
(SecE)
γ-subunit
(SecE)
γ-subunit
(SecE)

Plug

90˚

Figure 1
Crystal structure of the Methanococcus jannaschii SecY channel. (a) Channel viewed from the cytosol (top view). The transmembrane
(TM) segments 1–5 of the N-terminal domain of the α-subunit, called SecY in prokaryotes, are blue, and the TM segments 6–10 of the
C-terminal domain are red. The β-subunit is gray and the γ-subunit (SecE in prokaryotes) is beige. Pore residues are shown as
transparent spheres with side chains in green. The lateral gate containing TM segments 2b and 7 is indicated. (b) Side view of the
channel extending through the plasma membrane. The plug helix underneath the pore ring is yellow.
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Presenilin:
an intramembrane
aspartyl protease in the
γ-secretase protein
complex, which cleaves
various substrates,
including amyloid
precursor protein

interface. The β-subunit makes only a few contacts with the α-subunit, which may explain why it
is dispensable and less conserved. Viewed from the side, the channel has an hourglass-shaped pore
with a constriction about halfway across the membrane (Figure 1b). Whereas the cytoplasmic
funnel is empty, the external funnel is filled with a short helix—the plug. The constriction of
the channel is formed by a ring of six hydrophobic residues that project their side chains radially
inward. The residues forming this pore ring are amino acids with bulky, hydrophobic side chains.
In Escherichia coli all six pore residues are isoleucines.

The structure of bacterial SecY complexes is similar to that of the archaeal complex, as shown
initially by the similarities to a lower-resolution structure of the E. coli SecY complex, determined
by electron microscopy from two-dimensional crystals (7). Three-dimensional crystal structures
of SecY complexes from Thermotoga maritima (102), Aquifex aeolicus (102), Thermus thermophilus
(92), and Pyrococcus furiosus (23) all show the same architecture as the M. jannaschii complex, except
that the bacterial β-subunit has an additional TM segment preceding the one that is common to all
SecY complexes. In addition, in several bacterial structures the lateral gate is opened in response to
interaction with a binding partner. No crystal structure of a eukaryotic Sec61 complex is available,
but sequence conservation and electron microscopy structures suggest a similar architecture
(3, 57).

CHANNEL OPENING FOR SECRETORY PROTEIN TRANSLOCATION

The mechanism of protein translocation is best understood for secretory proteins. The process
begins with the loop insertion of the polypeptide substrate into the channel: The signal sequence
is intercalated into the walls of the channel and the following segment is located in the pore (84).
Opening of the channel for loop insertion probably occurs in two steps. The first is the binding of
a channel partner—the ribosome, the Sec62/Sec63 complex, or SecA. Crystal structures of SecY
complexes with bound SecA show that the lateral gate is partially opened and the plug is displaced,
although it still seals the pore (102). Lateral gate opening might be induced by an interaction
between SecA and the loop between TM8 and TM9, as an antibody bound to this loop has a
similar effect (92).

The second step is the intercalation of the hydrophobic part of a signal sequence into the
opened lateral gate. Photocross-linking experiments show that the bound signal sequence forms a
helix of about two turns, which is intercalated between TM segments 2b and 7 of the lateral gate
(74). The signal sequence can also be cross-linked to phospholipid molecules, indicating that it
sits at the interface between channel and lipid. The binding of the signal sequence would further
separate TM segments 2b and 7 and destabilize plug interactions, causing the plug to move out of
the way. Finally, the open state of the channel would be fixed by the insertion of the polypeptide
chain distal to the signal sequence into the pore proper. Consistent with this model for channel
opening, many mutations that allow the translocation of proteins with defective or even missing
signal sequences (signal sequence suppressor mutations) are expected to destabilize the closed
channel (16, 87, 90).

Once the channel is open, the signal sequence remains stationary during subsequent transloca-
tion, whereas the rest of the polypeptide moves through the pore. Interestingly, a synthetic signal
peptide can act in trans, allowing a polypeptide without a signal sequence to move through the
channel (32). The plug can return to the center of Sec61/SecY only when the polypeptide chain
has left the pore. At some point during translocation, the signal sequence is cleaved by signal
peptidase. In eukaryotes, the signal peptide is then further degraded by signal peptide peptidase,
a presenilin-like enzyme that cleaves the hydrophobic segment within the membrane (97).

24 Park · Rapoport
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A SINGLE COPY OF THE Sec61/SecY COMPLEX FORMS THE PORE
OF THE CHANNEL

The crystal structures indicate that a single copy of the Sec61/SecY complex forms the pore;
a polypeptide moves from the cytoplasmic funnel, through the pore ring, and into the external
funnel. This model is supported by disulfide cross-linking experiments with a SecA-dependent
translocation substrate: Both the signal sequence and the following polypeptide segment could
be cross-linked to the same SecY molecule (69). Moreover, cysteines placed in a translocation
substrate could efficiently form a disulfide bridge with cysteines placed at the constriction of the
hourglass-shaped SecY channel, indicating that the polypeptide chain moves through the center
of a single SecY molecule (9). This model likely applies to cotranslational translocation as well.
Electron-microscopy structures show that a single copy of the Sec61/SecY complex is bound
to a nontranslating ribosome, with the cytoplasmic funnel of the translocation channel located
underneath the ribosome tunnel (60, 61). A similar architecture is seen with translating ribosomes
(3, 27). Disulfide cross-linking experiments show that, in an intact E. coli cell, more than 70% of
SecY can be occupied with a defined ribosome-associated polypeptide chain (72). All these data
support the idea that a single Sec61/SecY molecule forms the translocation pore.

A consequence of this conclusion is that the pore is relatively narrow. In fact, the diameter
of the pore ring, as observed in the crystal structure, is barely large enough to allow the passage
of an extended polypeptide chain. The pore ring can widen by movements of the helices to
which the pore ring residues are attached, as indicated by molecular dynamics simulations and
electrophysiology experiments (34, 35, 79, 89). However, the structures indicate that the pore
could not be larger than ∼15 to 20 Å in diameter, much smaller than suggested by fluorescence-
quenching experiments (40–60 Å) (37). It is currently unclear why the latter experiments led to an
overestimate of the pore size.

The small pore size means that a translocating polypeptide is in an extended conformation or
perhaps forms an α-helix in the channel, but not tertiary structure, in agreement with experimental
data (2, 51). The aqueous interior of the channel, its hourglass shape, and the lack of interactions
between the hydrophobic pore residues and the hydrophilic polypeptide backbone all help to
minimize the energy required to move a translocation substrate through the membrane.

OLIGOMERIC STATE OF THE TRANSLOCATION CHANNEL

Although the pore is formed by only one Sec61/SecY molecule, this does not necessarily mean that
protein translocation can occur with just one copy. For example, it is conceivable that additional
Sec61/SecY molecules stabilize the ribosome-channel junction.

Oligomeric Sec61/SecY channels have indeed been detected in intact membranes by cross-
linking (18, 81, 95), fluorescence energy transfer (63, 88), and freeze-fracture electron microscopy
experiments (39, 82). A back-to-back orientation of two SecY molecules is suggested by a two-
dimensional structure of the E. coli SecY complex in a lipid bilayer and by cross-linking data
(6, 7, 18, 95). However, other orientations of the Sec61/SecY molecules in the oligomers have
not been excluded. After solubilization of membranes in detergent, the Sec61/SecY oligomers
dissociate into monomers, although under gentle conditions, oligomers can be detected by native
gel electrophoresis (5).

Functionally, oligomers of SecY complexes have been implicated in SecA-mediated translo-
cation, based on the observation that a SecY molecule defective in translocation can be res-
cued by linking it covalently with a wild-type SecY copy (69). The crystal structures of SecA-
SecY complexes show only one SecA molecule bound to one SecY molecule (102), but disulfide
bridge cross-linking experiments indicate interactions between SecA and a cytosolic loop of SecY
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(69, 92), which cannot be explained by the crystal structure. It was proposed that SecA binds
through one of its domains to a nontranslocating SecY copy and pushes the polypeptide chain
through a neighboring SecY copy (69). The interaction with the nontranslocating copy could
prevent complete detachment of SecA during the nucleotide hydrolysis cycle and thus ensure
processivity during polypeptide translocation. This view is supported by single-molecule experi-
ments (18), but a recent study using similar techniques reported that a single copy of SecY is suf-
ficient for translocation (50). This discussion demonstrates that many issues about the oligomeric
state of Sec61/SecY complexes remain unresolved.

MECHANISM OF COTRANSLATIONAL TRANSLOCATION

Cotranslational translocation begins with the signal or TM sequence of a growing polypeptide
chain being recognized by the SRP (Figure 2). Next, the ribosome–nascent chain–SRP complex
binds to the membrane, first by an interaction between SRP and its membrane receptor and then
by an interaction between the ribosome and the Sec61/SecY channel (for review of the targeting
phase, see References 33, 36, 80). Subsequently, the elongating polypeptide chain moves directly
from the tunnel inside the ribosome into the associated membrane channel. GTP hydrolysis is
required for chain elongation by the ribosome, but polypeptide movement through the channel
is independent of nucleotide hydrolysis (10).

Electron microscopy structures of ribosome-channel complexes show that the exit site of
the nascent chain from the ribosome is aligned with the pore of the channel, supporting the
notion that a nascent chain emerging from the ribosome tunnel could be transferred directly

Extracellular
space

Cytosol

Signal
sequence

SRP
receptor

SRP

Sec61/
SecY

mRNA

1

2

3 4

5

Figure 2
Model of cotranslational translocation. The scheme shows different steps in the cotranslational translocation
of a secretory protein. Step 1: Binding of the signal recognition particle (SRP) to a ribosome carrying a
nascent chain with exposed signal sequence. Step 2: Binding of the ribosome–nascent chain–SRP complex to
the SRP receptor. Step 3: Release of SRP, binding of the ribosome to the Sec61/SecY channel, and transfer
of the nascent chain into the channel. Step 4: Translocation of the polypeptide chain, signal sequence
cleavage, and folding of the polypeptide on the other side of the membrane. Step 5: Termination of
translocation and dissociation of the ribosome into its two subunits.
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Nanodisc:
a small (∼10- to
15-nm-diameter) lipid
bilayer disc stabilized
by an engineered
apolipoprotein
fragment

TPR motif:
tetratricopeptide
repeat motif

into the Sec61/SecY channel (3, 27, 60, 61). Surprisingly, two recent structures obtained with
ribosome–nascent chain–channel complexes in detergent show no significant conformational
change of the channel compared with its resting state (3). However, in the most recent struc-
ture, obtained with the SecY complex incorporated into lipid nanodiscs, the lateral gate of the
channel was partially opened (27). Electron density for the TM segment of the nascent chain was
seen adjacent to the channel, probably corresponding to a state after its lateral release from the
channel interior. Future work must be directed toward a higher-resolution structure of ribosome–
nascent chain–channel complexes in which the presence of a nascent chain inside the channel is
verified by biochemical experiments.

MECHANISM OF BiP-DEPENDENT POSTTRANSLATIONAL
TRANSLOCATION

The mechanism of BiP-mediated posttranslational translocation has been elucidated in yeast but is
probably the same in all eukaryotes (Figure 3). Translocation begins with the binding of a translo-
cation substrate to the Sec complex, consisting of the trimeric Sec61 complex and the Sec62/Sec63
complex (in Saccharomyces cerevisiae composed of Sec62p, Sec63p, Sec71p, and Sec72p). During this
step, all cytosolic chaperones bound to the substrate are released (75). Several different chaperones
appear to cycle on and off the completed polypeptide chain, but once the substrate is bound to
the Sec complex, their rebinding is prevented. Sec72p contains TPR motifs, which might interact
with cytosolic Hsp70 and Hsp90 proteins, perhaps facilitating their release from the translocation
substrate. However, neither Sec71p nor Sec72p are essential (25, 26), and the mammalian complex
lacks both proteins. The function of the essential large cytosolic domains of Sec62p and Sec63p
also remains unclear.

D

D

T

T

D

ADPT
DPi

+ ATP

Chaperones

Preprotein

Signal
sequence

BiP

Sec62/63

Sec61

J-domain

1 2 3 4

ER lumen

Cytosol

Figure 3
Model of posttranslational translocation in eukaryotes. The scheme shows different steps in the
posttranslational translocation of a eukaryotic secretory protein. Step 1: Binding of a completed polypeptide
chain to the Sec complex, consisting of the Sec61 channel and the Sec62/Sec63 complex. Chaperones
associated with a completed polypeptide chain are released during its insertion into the channel. Step 2: BiP
in its ATP-bound state (T) interacts with the J-domain in Sec63. Following ATP hydrolysis, BiP binds to the
polypeptide substrate in its ADP state (D), preventing the polypeptide from sliding back into the cytosol.
Step 3: When the polypeptide chain has moved a sufficient distance into the endoplasmic reticulum (ER)
lumen, the next BiP molecule binds. This process is repeated until the polypeptide has completely traversed
the channel. Step 4: Nucleotide exchange releases BiP from the polypeptide chain.

www.annualreviews.org • Protein Translocation Across Membranes 27

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

01
2.

41
:2

1-
40

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
C

al
if

or
ni

a 
In

st
itu

te
 o

f 
T

ec
hn

ol
og

y 
on

 0
3/

28
/1

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



BB41CH02-Rapoport ARI 11 April 2012 8:14

J-domain: a domain
found in all J-proteins,
which stimulates the
ATPase activity of the
Hsp70 protein
partners

Once the polypeptide is inserted into the channel, its translocation occurs by a ratcheting
mechanism. The polypeptide chain in the channel can slide in either direction by Brownian motion,
but its binding to BiP inside the lumen of the ER results in net forward translocation. A Brownian
ratcheting mechanism is supported by the observation that ATP-independent translocation can
occur when BiP is replaced by antibodies to the substrate (59).

BiP starts out in its ATP state with an open peptide-binding pocket (Figure 3). After inter-
action with the J-domain of Sec63p, ATP is hydrolyzed, and the peptide-binding pocket closes
around the translocating polypeptide chain. The location of the J-domain ensures that BiP acti-
vation only occurs close to the channel. Although BiP preferentially binds hydrophobic peptides
under equilibrium conditions, it shows little sequence specificity when activated by the J-domain
of Sec63p (62). Because BiP is too large to move through the channel, it prevents the bound
polypeptide chain from sliding back into the cytosol. When the polypeptide has moved a suffi-
cient distance in the forward direction, the next BiP molecule can bind. This process is repeated
until the polypeptide chain has completely traversed the channel. Finally, exchange of ADP for
ATP opens the peptide-binding pocket and releases BiP.

MECHANISM OF SecA-MEDIATED TRANSLOCATION

SecA is a cytosolic ATPase of the RecA family. It consists of several domains: two nucleotide-
binding domains (NBD1 and NBD2) with the nucleotide bound at their interface; a helical
scaffold domain (HSD), consisting of a long helix (HSD-I) and two shorter helices (HSD-II),
dubbed the “two-helix finger”; a polypeptide-cross-linking domain (PPXD); and a helical wing
domain (HWD) (Figure 4a). Crystal structures of SecA from different species were all obtained
in ADP or without nucleotide and differ greatly in the position of the PPXD relative to the HWD
(Figure 4b); the PPXD is either packed against the HWD (46, 94, 101) or rotated away from
it toward the NBD2 (68, 71). The groove between the PPXD, NBD2, and parts of the HSD is
referred to as the clamp, which can thus be in open or closed states (Figure 4a,b).

Several different dimers of SecA have been observed in crystal structures and some of these
dimers coexist in solution (19, 98). Although some experiments suggest that SecA functions as a
dimer during translocation (48, 52), it seems more likely that it acts as a monomer (66, 102); the
role of the dimer may be to maintain a low basal rate of ATPase activity in the resting state (30).

Crystal structures of a complex of SecA and the SecY channel were obtained in the presence of
ADP plus beryllium fluoride (BeF3

−), mimicking a state similar to the ATP-bound state (102). One
SecA is bound to one copy of SecY (Figure 5). The flat SecA molecule is oriented approximately
parallel to the plane of the membrane. Most of the interactions with SecY are mediated by the
PPXD. Compared with the conformation of SecA, in which the clamp is wide open, the PPXD
has rotated by 80o, inserting a loop between the NBDs (Figure 4b). The movement of the PPXD
allows the clamp to capture a translocation substrate. The clamp is located above the SecY pore
(Figure 5a), enabling a polypeptide chain to move through the clamp into the channel, a postulate
confirmed by systematic disulfide cross-linking experiments (2).

The long helix of the HSD also makes contact with the SecY channel. It lies across SecY
and might serve as a lever arm that transmits and amplifies nucleotide-dependent movements
between the NBDs to the other domains of SecA. The two-helix finger of SecA is inserted into
the cytoplasmic funnel of SecY, with the loop between the two helices right above the pore entrance
(Figure 5). It was postulated that, upon ATP binding by SecA, the finger would move toward the
channel and drag the polypeptide chain with it (Figure 6). Upon ATP hydrolysis, the finger would
reset. This process would be repeated until the entire polypeptide chain is translocated. Resetting
of the finger could be coordinated with clamp tightening and holding the polypeptide. Both
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NBD1NBD2

PPXD

HWD

HSD-I

Nucleotide-binding
pocket

Clamp

HSD-II (two-
helix finger)

β-sheet

Clamp

NBD1 PPXD NBD2

HSD-I HSD-II (two-
helix finger)

HWD
N C

a

Clamp closed
(SecY bound)

Clamp partially openClamp wide open

b

Figure 4
Structure of the bacterial SecA ATPase. (a) Domain organization of SecA. The arrow indicates the movement of the PPXD (see
structures in panel b). A polypeptide substrate moves perpendicular to the plane through the clamp ( purple). The polypeptide probably
forms a transient β-strand of three to four residues with the indicated β-sheet at the back of the clamp. (b) Different crystal structures
of SecA corresponding to states in which the clamp is either wide open (PDB:1M74), partially open (PDB:1TF2), or closed (SecY
bound; PDB:3DIN). The movement of the PPXD is proposed to capture the polypeptide substrate in the clamp. An amino acid at the
tip of a loop of the PPDX inserts between the two NBDs in the SecY-bound state (shown in ball presentation). Abbreviations: PPXD,
polypeptide-cross-linking domain; HWD, helical wing domain; NBD, nucleotide-binding domain; HSD, helical scaffold domain.

the movement of the two-helix finger and the tightening of the clamp are speculative. Alternative
models, such as the polypeptide is pushed into the channel by the clamp tilting toward the channel,
although perhaps less likely, cannot be excluded.

Alanine scanning mutagenesis of the two-helix finger has shown that a tyrosine in the loop
between the two helices is important for translocation (24). The tyrosine can be replaced by other
bulky, hydrophobic amino acids, but not by small or charged residues. Most SecA proteins in the
database indeed have a tyrosine at the critical position, but other bulky, hydrophobic residues are
occasionally observed. In the crystal structure, the tyrosine does not contact SecY, suggesting that
its essential role is to interact with the translocating polypeptide chain. Indeed, disulfide cross-
linking experiments show that a polypeptide chain passes by the fingertip before entering the SecY
pore (2, 24). Interestingly, peptide-translocating hexameric ATPases, such as ClpX, ClpA, HslU,
p97, and FtsH, may use an analogous mechanism: Each subunit has a loop with an aromatic residue
at its tip, which contacts the polypeptide chain and transports it through the central pore (15, 44,
73, 85, 100). How the aromatic residue interacts with the polypeptide chain is not understood in
any of the cases.

How can SecA transport a large range of substrates that differ widely in their sequence? One
answer is probably that the clamp embraces a polypeptide chain, similar to how some chaperones
bind their diverse substrates in a deep groove. However, it appears that SecA also interacts with
translocating polypeptides in a sequence-independent manner by inducing a short β-strand in
the substrate that extends the β-sheet at the back of the clamp (Figure 4a). Such a β-strand
augmentation mechanism is suggested by a crystal structure of Bacillus subtilis SecA with a synthetic
peptide (103), as well as by two structures of B. subtilis SecA. In one structure, a C-terminal domain
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Extracellular
space

Cytosol

PPXD

Two-helix
finger

NBD1/2
Clamp

SecY channelSecY channelSecY channel

Translocating
polypeptide

(model)

Figure 5
Structure of the Thermotoga maritima SecA-SecY complex. A hypothetical translocating polypeptide chain is
shown in blue. The clamp formed by rotation of the PPXD (red ) positions the polypeptide over the SecY
pore. The two-helix finger ( green) contacts the polypeptide with its tip. The nucleotide bound between the
NBDs is shown in ball presentation. Abbreviations: PPXD, polypeptide-cross-linking domain;
NBD, nucleotide-binding domain.

Periplasm

Cytosol

ATP ADP + Pi

SecB

SecA

SecY

Preprotein

Two-helix
finger

PPXD

Signal sequence

+ ATP

Clamp

1 3

2

Figure 6
Model of SecA-mediated posttranslational translocation in bacteria. The scheme shows the postulated steps
in the posttranslational translocation of a secretory protein. Step 1: SecA binds to a completed polypeptide
chain and inserts it into the SecY channel. The cytosolic chaperone SecB is released during this process.
Step 2: During repeated ATP hydrolysis cycles, movements of the two-helix finger push the polypeptide into
the channel. The clamp might hold the polypeptide chain while the two-helix finger resets to grab the next
segment of the substrate. Step 3: After translocation is terminated, SecA is released from SecY. Abbreviation:
PPXD, polypeptide-cross-linking domain.
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of SecA interacts in a β-strand conformation with the clamp (46), and in the other, two SecA
molecules interact in the crystal such that a β-strand is generated in one copy that is bound to
the clamp of the other copy (101). In all these cases, the curvature of the β-sheet would direct the
additional β-strand into the clamp. The induced β-strand involves only three to four residues, so
the interaction could be transient and allow polypeptide movement during translocation.

Although the main function of SecA may be in the translocation of secretory proteins, it is
involved in the biosynthesis of membrane proteins with large periplasmic domains (14). Ribosome-
and SecA-mediated translocation modes might alternate during the synthesis of these proteins, a
possibility that may be related to the surprising finding of SecA binding to ribosomes (45).

THE ROLE OF SecD/F AND OF A MEMBRANE POTENTIAL
IN TRANSLOCATION

SecA-mediated protein translocation is stimulated by the multispanning membrane protein com-
plex SecD/F, which associates with the SecY channel (21, 76). A recent crystal structure shows
that T. thermophilus SecD/F contains 12 TM segments, 6 TM segments in both SecD and SecF,
arranged in a pseudosymmetrical manner (91) (Figure 7). In several species SecD/F consists of a
single polypeptide chain. The membrane-embedded domains qualify SecD/F as a member of the
RND family of transporters. The protein also contains two periplasmic domains, P1 and P4. P1 can
interact with polypeptides and undergo a conformational change. The membrane-embedded part
can conduct protons at the SecD-SecF interface, with conserved aspartate and arginine residues
lining the pathway across the membrane. The proton-conduction pathway seems to be similar
to that of AcrB, another member of the RND family of transporters (65). Interestingly, some
halophilic Vibrio bacteria contain two SecD/F genes; one apparently conducts protons and the

SecDSecDSecFSecF SecDSecF

Periplasm

Cytosol

Proton

P1
P4

Figure 7
Structure of the Thermus thermophilus SecD/F complex. SecD/F consists of 12 transmembrane segments and
two large periplasmic domains (P1 and P4). The membrane-embedded parts of SecD (blue) and SecF
(magenta) conduct protons. This may be coupled to a conformational change in the periplasmic domain P1
(blue and green conformations; the arced arrow indicates the transition between them), by which a translocating
polypeptide chain is bound and released, thereby pulling it into the periplasm.
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other sodium ions (91). It has been proposed that the movement of the ions through the mem-
brane is coupled to the conformational change of the P1 domain, resulting in SecD/F pulling
on a translocating polypeptide on the periplasmic side of the membrane. Indeed, late stages of
SecA-mediated protein translocation can occur without ATP in a SecD/F- and proton-gradient-
dependent manner (91).

MAINTAINING THE MEMBRANE BARRIER FOR SMALL MOLECULES
DURING TRANSLOCATION

The Sec61/SecY channel must prevent the free movement of small molecules, such as ions or
metabolites, both in its resting state and when translocating a polypeptide. Maintaining the mem-
brane barrier is particularly important for prokaryotes, because ion gradients across the membrane
are their main energy source. The mammalian ER membrane is somewhat permeable to small
molecules (53), but it must also prevent the free flow of Ca2+ ions.

The mechanism by which the permeability barrier is maintained has been controversial. Results
from fluorescence-quenching experiments with ER membranes suggest that the channel itself is
not a barrier for small molecules; it would have a pore size of 9 to 15 Å in the resting state and
widen to 40 to 60 Å during translocation (37, 38). The seal would be provided by BiP binding
to the lumenal end of the channel in the resting state and by the translating ribosome binding to
the cytoplasmic side of the channel during translocation. BiP would also close the channel when
a cytosolic domain of a membrane protein is synthesized (38). This would be triggered when the
TM segment of the nascent chain is still inside the ribosome tunnel (55–57), but it is difficult to
see how a long hydrophobic sequence can be recognized inside the hydrophilic ribosome tunnel.
A tight seal between the ribosome and channel is also at odds with electron microscopy structures
that reveal a gap of 12 to 15 Å between them (4, 27, 60, 61). Finally, this model does not explain how
the membrane barrier is maintained in the absence of a ribosome in posttranslational translocation
or in the absence of BiP in prokaryotes.

Structural and biochemical studies suggest a different model, in which the membrane barrier
is formed by the channel itself (Figure 8). In the resting state, the seal would be provided by both
the plug and the pore ring. This conclusion is supported by electrophysiology experiments, which
indicate that the resting SecY channel, reconstituted into a planar membrane, is indeed imper-
meable to ions and water and opens on plug displacement (79). Recent experiments with intact
E. coli cells also show that the resting wild-type SecY channel is impermeable to small molecules
but becomes permeable when the plug is deleted or when pore residues are replaced by amino
acids with small side chains (72). The plug interacts with the pore ring, which explains why both
features are required to seal the resting channel (54, 93). These experiments also clarify how the
membrane barrier is maintained during translocation (72). In the active channel, the plug is dis-
placed and the pore ring forms a gasket-like seal around the translocating polypeptide chain. The
translocating polypeptide chain itself serves as the major obstacle for small molecules; without
it, the open channel allows many small molecules to pass. The model implies that whenever the
polypeptide leaves the channel, either toward the extracellular side after termination of transloca-
tion or sideways into the lipid after the arrival of a hydrophobic TM segment, the plug returns and
reseals the channel. This mechanism would apply to both cotranslational and posttranslational
translocation. Given the sequence conservation of the SecY and Sec61 channels, the proposed
model may be universal. However, in prokaryotes, a tight seal is essential for cell viability, whereas
in eukaryotes, the intracellular ER membrane may tolerate some leakiness. This may explain why
mutations of Sec61p pore residues in S. cerevisiae cause only minor growth defects, whereas the
equivalent mutations in E. coli are lethal (49, 72).
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Pore ring or

Substrate
polypeptide

Plug

Resting Translocating

Figure 8
Model for maintaining the membrane barrier by the SecY/Sec61 channel. (Left) In the resting state of the
channel, small molecules on either side of the membrane (black and purple spheres) are prevented from moving
through the channel by both the pore ring ( green) and the plug domain ( yellow). (Middle) During
translocation the plug is displaced. The pore ring forms a gasket-like seal around the translocating
polypeptide chain to prevent the free flow of small molecules. When the polypeptide leaves the channel, the
plug returns and reseals the channel. This occurs either after translocation is terminated, when the
polypeptide has moved completely toward the extracellular side (right, lower panel ), or after the arrival of a
hydrophobic transmembrane segment of a membrane protein, when the transmembrane segment exits
sideways into the lipid bilayer (right, upper panel ).

MEMBRANE PROTEIN INTEGRATION BY THE Sec61/SecY CHANNEL

Most membrane proteins are integrated cotranslationally into the lipid bilayer. In the simplest
model, TM segments insert sequentially into the lipid phase; hydrophilic segments between the
TM segments move alternately from the ribosome, through the aqueous channel, to the external
side of the membrane, or they emerge between the ribosome and channel into the cytosol via a
gap, which can be visualized in electron microscopy structures (4, 27, 60, 61). Each TM segment
exiting the ribosome enters the Sec61/SecY channel and then leaves the channel through the
lateral gate into the lipid phase. The size of the channel, as seen in crystal structures, indicates
that TM segments exit laterally one by one or in pairs.

The lateral gate is formed from short segments of four TM segments at the front of Sec61/SecY.
This seam in the channel wall is probably weak, as indicated by structures of the SecY channel
in which it is partially open (23, 92, 102). The lateral gate might be either permanently open
once a channel partner is bound or continuously open and close. In either case, a polypeptide
segment located in the aqueous channel would be exposed to the surrounding hydrophobic lipid
phase, allowing it to partition between the hydrophilic and hydrophobic environments. If hy-
drophobic enough, the segment would exit through the lateral gate into the lipid phase. This
model is supported by photocross-linking experiments that examined the lateral exit of a TM
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segment in different translocation intermediates (42), as well as by the agreement between a hy-
drophobicity scale derived from peptide partitioning into an organic solvent and the tendency of
a peptide to span the membrane (43). However, there may also be a kinetic component to the
partitioning process, because mutations in the pore ring of S. cerevisiae Sec61p affect the efficiency
of hydrophobic sequence integration into the lipid phase (49), and moderately hydrophobic se-
quences integrate more efficiently into the lipid phase when the rate of translocation is reduced
(22).

According to the sequential insertion model, the first TM segment in a multispanning mem-
brane protein determines the orientation of the subsequent segments. The first TM segment has
its N terminus in the cytosol if the segment preceding the hydrophobic region is long or positively
charged (positive-inside rule; 40, 41). In one model, the N terminus is retained in the cytosol
by being folded or by the interaction between its positive charges and negatively charged lipid
head groups. An alternative model has been suggested for some proteins: The N terminus first
moves through the channel to the other side of the membrane and then returns to the cytosol (17,
29). Immediate translocation of the N terminus occurs at least with proteins, which have their
N terminus ultimately on the extracellular side. Translocation of the N terminus occurs if the N
terminus lacks positive charges, the hydrophobic sequence is long, and the preceding polypeptide
segment is not tightly folded (for review, see Reference 78).

The sequential insertion model does not apply to all membrane proteins, as there are cases in
which internal TM segments have a preferred orientation regardless of the behavior of preceding
TM segments (28, 58, 96). In the most striking example, mutation of C-terminal amino acids in the
EmrE protein changed the topology not only of the last TM segment but also of the preceding
three TM segments (83). This raises the possibility that TM segments previously integrated
into the lipid phase can invert their topology at late stages during synthesis of the membrane
protein.

It is possible that intermediates in the synthesis of multispanning membrane proteins need
to be stabilized by membrane chaperones, for example, if the membrane-inserted part of the
protein contains charges that are only compensated for by parts of the protein that have yet
to be synthesized. In bacteria, a candidate for a membrane chaperone is the SecY-associated
YidC protein (for review, see Reference 99). An analogous function has been proposed for the
translocating chain-associating membrane (TRAM) protein in higher eukaryotes (for review, see
Reference 78).

SUMMARY POINTS

1. A universally conserved protein-conducting channel, referred to as the Sec61 channel in
eukaryotes and as the SecY channel in prokaryotes, is responsible for the translocation
of proteins across and the integration of proteins into cellular membranes.

2. Crystal structures of the SecY channel and biochemical data show that a single copy of
the heterotrimeric Sec61 or SecY complex forms the channel, resulting in a relatively
narrow pore through which a polypeptide moves in an extended conformation.

3. The channel opens for secretory protein translocation by insertion of a polypeptide as a
loop, with the signal sequence intercalated into the lateral gate and the following segment
in the actual pore. This results in displacement of the plug domain of the channel.
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4. Depending on binding partners, the channel translocates polypeptides by different mech-
anisms. In cotranslational translocation, the ribosome feeds the polypeptide chain directly
into the channel. In posttranslational translocation, a ratcheting mechanism is used by
the ER lumenal chaperone BiP in eukaryotes and a pushing mechanism is utilized by
the SecA ATPase in bacteria. In prokaryotes, posttranslational translocation is facilitated
through the function of the SecD/F protein.

5. The channel itself is responsible for maintaining the membrane barrier for small
molecules, such as ions or metabolites. In the resting state, the channel is sealed by
the pore ring amino acids as well as the plug domain. When in the active state, the pore
ring forms a gasket-like seal around the translocating polypeptide chain.

6. The channel integrates membrane proteins into the lipid bilayer by allowing TM seg-
ments to partition from the aqueous interior of the channel, through the lateral gate,
into the lipid phase.

FUTURE ISSUES

1. What is the oligomeric state of the Sec61/SecY channel during translocation? Is an
oligomer required for translocation?

2. How exactly does SecA push a polypeptide through the channel?

3. How does the Sec62/Sec63 complex activate the Sec61 channel for posttranslational
translocation in eukaryotes? What is the structure of the eukaryotic Sec proteins?

4. How exactly does SecD/F associate with the SecY channel and facilitate protein
translocation?

5. What is the function of YidC in bacteria and of the TRAM protein in mammals? Are they
membrane chaperones that associate with insertion intermediates of membrane proteins?

6. An important research focus should be the determination at high resolution of a structure
of an active channel translocating a polypeptide.
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